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A new natural structure on the tangent spaces of a co-tangent bundle is introduced 
and some of  its properties are investigated. This structure is based on a symmetric 
bilinear form and leads to a geometry that is, in many respects, analogous to 
the symplectic geometry. The new structure can thus justifiably be called co- 
symplectic geometry. The null structure of  co-symplectic vector spaces is investi- 
gated in detail. It is found that the manifold of  all maximally isotropic subspaces 
o fa  co-symplectic vector space is a homogeneous compact manifold of  dimension 
�89 ( n -  1) consisting of  two diffeomorphic components and having fundamental 
group Z20)Z  2. A representation of  the fundamental group of  this manifold is 
explicitly constructed in terms of quadrupoles of  co-Lagrangian subspaces. 

1. I N T R O D U C T I O N  

Symplectic geometry plays a central role in many recent important 
developments in theoretical physics. [See, for example, Guillemin and 
Sternberg (1977, 1984) and the extensive bibliographies therein.] The reason 
for this is not difficult to establish. Space-time is the arena in which physical 
phenomena occur. Any description of those phenomena must therefore be 
given in terms of  space-time itself, or else in terms of some suitable geometric 
superstructure constructed upon it, like the configuration space, the event 
space, the phase space, or any of the several manifolds that are in use in 
the different branches of  mathematical physics. Furthermore, since physics 
is interested in the way in which a system develops in time, a description 
of  the system will resort normally to the use of differential equations. This 
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requires a further extension of  the adopted geometric structure or superstruc- 
ture to some kind of bundle, which is the natural environment for differential 
equations. It is here that symplectic geometry enters the picture: the symplec- 
tic structure is a natural structure on these bundles that is useful for the 
discussion of  many of  the equations of mathematical physics in geometric 
terms. It is not surprising, therefore, to find it at the heart of so many of 
the theories of mathematical physics. What is perhaps surprising is that it 
has taken so long to recognize the central role of  the symplectic geometry 
and to give it the individual attention and study that it deserves. 

But the symplectic structure is not the only structure that is natural to 
the fiber bundles of  physics. There is another that is equally natural and 
equally useful, based not on an antisymmetric bilinear form on the co- 
tangent bundle, but on a symmetric one. This replacement of  the funda- 
mental form by one of opposite symmetry leads to a geometry that, in many 
respects, is directly the analog of the symplectic structure on which it is 
modeled. Many concepts and theorems of  the new geometry can be carried 
over directly from the old, albeit with important modifications. Its theory 
can thus be developed along parallel lines. For this reason, we propose to 
call the new geometry co-symplectic geometry. 

It would be a mistake to regard co-symplectic geometry as a complete 
newcomer to physics. Rather, like its symplectic counterpart, it occurs in a 
natural way in many structures of  interest (see, for example, Sch6nberg, 
1957a, b, 1958; Bohm and Hiley, 1983; Frescura and Hiley, 1984). In this 
sense, it can be said to be latent, or implicit, in these structures. But like 
its symplectic cousin, which had to wait a considerable time before its 
intrinsic importance was recognized, co-symplectic geometry so far does 
not appear to have been identified as an independent structure worthy of  
separate study. 

The usefulness of  introducing a co-symplectic structure into the 
cotangent bundle is that it allows the immediate geometrization of  a number 
of  familiar structures in physics which cannot be geometrized easily by the 
methods of symplectic geometry. Among these are the fermionic operators 
of  quantum field theory, and the Killing vector fields associated with 
symmetries and their corresponding conservation laws. The co-symplectic 
geometry, of course, is not a replacement for or a competitor against 
symplectic geometry. Rather, it is complementary to it, and it is foreseen 
that both structures will have to be used in conjunction to achieve a full 
geometrization of  physics. 

In this paper, we present a preliminary study of the co-symplectic 
geometry. We confine ourselves to the algebraic foundations of  the theory. 
The definition and investigation of co-symplectic manifolds is left to a later 
publication. Accordingly, we begin in Section 2 with a definition of the 
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cosymplectic vector space and define also a canonical basis for the space, 
which we call a co-symplectic basis. In Section 3, we introduce the co- 
symplectic group and its Lie algebra. Since later developments require the 
use of  the conformal co-symplectic group and its Lie algebra, we also discuss 
these briefly. 

Many important results and applications of the symplectic geometry 
hinge on the notion of  Lagrangian subspaces. Also of importance in this 
connection are the properties of the manifold of  all Lagrangian subspaces. 
The many analogies that exist between symplectic and co-symplectic 
geometries indicate that similar developments will also be of importance 
in the context of the later. Accordingly, we define co-Lagrangian subspaces, 
and establish some elementary properties of the manifold of all co- 
Lagrangian subspaces in Section 4; the conditions for two co-Lagrangian 
subspaces to be transversal are established in Section 5, and the manifold 
of all co-Lagrangian subspaces transversal to a given co-Lagrangian sub- 
space is parametrized in Section 6. Finally, in Section 7, we establish some 
basic topological properties of  the manifold of  all co-Lagrangian subspaces. 

2. DEFINITION OF COSYMPLECTIC VECTOR SPACE 

Let E be a finite-dimensional real vector space, and E* its linear dual. 
Denote their direct sum E * ~ ) E  by V. For the sake of  definiteness, E may 
be interpreted as the configuration space of classical mechanics. The space 
E* would then be the momentum space, and E * G E  the corresponding 
phase space. 

The natural symplectic structure on V is defined by the skew-symmetric 
bilinear form to: Vx  V~9] ,  

to ((p, q), (p',  q ')):= (p', q ) - ( p ,  q') (1) 

Here (p, q) denotes the value of  p ~ E* on q ~ E, that is, 

(p, q) :=,~(q) 

There is another natural structure that can be defined on V. This is 
given by the symmetric bilinear form or: Vx  V ~  ~ ,  where 

cr((p, q), (p', q ' ) )=  (p', q )+(p ,  q') (2) 

Because of  the obviou s analogy between (1) and (2), we shall call the space 
( V, or) a co-syrnplectic vector space, and or a co-symplecticform. 

A basis for V can be obtained as follows. Select a basis eq, of  E, together 
with the dual basis ep, of  E,* where i = 1 , . . . ,  n, and n is the dimension of 
E. Then 
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Put 

ei := (o, e q , ) ,  en+, " =  (ep,, O) 

The vectors e~, with /.~ = 1 , . . . ,  2n, will be a basis for V. We shall call a 
basis for V formed in this way a natural basis for the co-symplectic space. 

In terms of  a natural basis, the coefficients o-~ of the matrix representing 
the co-symplectic form o- are given by 

c5, . := o-(e~, G)  

o r  

o" 0 = 0 = o - . + i , ~ §  

O' i ,n$ j  = ~i j  = O'n-Fj, i 

Denoting this matrix by S, we have 

oq (3) 
where I is the unit n x n matrix. The value of  the co-symplectic form o- on 
u, v ~ V can then be written in terms of a matrix product  as 

Note that 

o~(u, v) = u~Sv 

S = [ [  _ [ ] [ 0  / _ 0 i ] [ ~  _ ] ]  ' (4) 

The matrix S is therefore equivalent, by a similarity transformation, to the 
matrix 

This would seem to indicate that the co-symplectic form o- essentially defines 
on V a pseudo-Euclidean metric structure with signature zero. For n = 1, 
this would then yield the ordinary hyperbolic plane. In fact, this is not so. 
Even though our geometry will have a good deal in common with such a 
pseudo-Euclidean structure, it should nevertheless not be forgotten that V 
has, in addition to o', two distinguished subspaces E and E*, which together 
define a unique splitting of  V into the direct sum E*OE. This makes the 
co-symplectic geometry more closely analogous to the symplectic than to 
the pseudo-Euclidean geometry. Furthermore, the notion of " length" in the 
co-symplectic case is rather weak, since the set of  isotropic vectors in such 
a space is of  maximal size among the pseudo-Euclidean spaces. A 
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classification scheme based on the notion of length therefore would not be 
particularly useful. Of  far greater importance is the null-structure inherent 
in (V, o-). It is thus preferable to develop the geometry of co-symplectic 
spaces in a way that parallels that of  symplectic spaces. 

The natural bases are not the only ones in which the matrix that 
represents cr has the form (3). This leads us to define more generally a 
eo-symplectie basis as one in which rr has the form (3). The natural bases 
are thus a special kind of co-symplectic basis. 

3. C O - S Y M P L E C T I C  AND C O N F O R M A L  CO-SYMPLECTIC  
G R O U P S  A N D  T H E I R  LIE A L G E B R A S  

We define the co-symplectic group Cs(V, or) to be the group of linear 
t ransformations on V which preserve the form o-, 

Cs( V, o-) = {A c GL( V): rr(Au, Av) = ~r(u, v), Vu, v c V} 

Since or is symmetric with signature zero, Cs( V, o-) is isomorphic to the 
orthogonal  group O(n, n; 9t) of real 2n x 2 n  matrices M satisfying 

M T S ' M = S '  

where S'  is given by (5). 
Let e , ,  wi th /z  = 1, . . . ,  2n, be a natural basis for V. The group 

{M ~ GL(2n, 91): M T S M  = S} 

where S is given by (3), will be a matrix representation of Cs(V, rr). We 
shall denote this group by Cs(2n, 91). 

Let A ~ Cs (2n, 91). It is convenient to use'block matrix notation and write 

A=[; 
where P, Q, R, S are n x n matrices. The defining relations for A then give 

RTP+ P~R =0 

S~Q + Q~S = 0 

R T Q + p r s  = I 

The first two conditions can be met by setting the products R r P  and SrO 
equal to any two arbitrary skew-symmetric matrices. In particular, we can 
set Q =  R =0.  Then P =  (sT)  -1, where S e  GL(n, 91). This generates a sub- 
group of t ransformations of  the form 
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which are just the transformations of  V induced by a general linear transfor- 
mation of  E. I f  E is identified as the configuration space of  mechanics,  and 
E* as the momentum space, then the transformations of  form (6) are just 
the coordinate transformations of  Lagrangian mechanics. Similarly, setting 
P = S = 0, we get Q = ( R T )  -1 with R e GL(n, 91). This generates a subgroup 
of transformations which exchange the configuration and momentum 
spaces. 

We denote by g the Lie algebra of  G, and by o(n, n; 91) that of  the 
matrix group O(n, n; 91). These two Lie algebras are isomorphic. Using 
block matrix notation, we X e o(n, n; 9t) as 

The defining condition 

then gives 

and 

11 

X T S +  S X  =O 

f l + / 3 r = O =  3,+3, r 

8 = - a  T 

with no restriction on a. Hence 

and 

dim Cs( V, o-) = dim cs( V ,  o- )  = 2 n  2 - n 

We shall also need later the conformal  co-symplectic group CCs(v, tr). 
This is the group of linear transformations on V which preserve the form 
or up to a factor, 

CCs( V, ~r) = {A e GL( V): cr(Au, Av)  = tZACr(U, V), Vu, v e V} 

The constant /-~a might in principle be expected to depend not only on the 
t ransformation A, but also on the particular elements u, v e V. However,  it 
can be shown to depend on A alone. 

The Lie algebra of  CCs( V, tr) will be denoted by ccs( V, or). Its defining 
condition is then 

X ~ ccs( V, 09 r cr(Xu, v) + o'(u, Xv)  = ~x  (u, v) 
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4. CO-LAGRANGIAN SUBSPACES 

A maximal isotropic subspace L c ( V, o-) will be called a co-Lagrangian 
subspace of  V. Thus, L c V is co-Lagrangian if and only if 

o-(u, v) = 0 Vu, v ~ L 

and, if L' is isotropic, then 

L ' ~  L ~ L '  = L 

By a standard theorem in the geometry of bilinear forms (Dieudonn6, 1964, 
Proposition 5, p. 152), 

dim L = �89 dim V = n 

Let L be some fixed co-Lagrangian subspace. We can parametrize L 
by setting 

where ~: and ~ are fixed n x n matrices, 0 ~ 9t", and 

As 0 ranges over ~t", x will range over the entire space L. Of course, ~ and 
~7 cannot be chosen arbitrarily. The isotropic condition on L requires that 
~ ( x , y ) = O V x ,  y e L .  Thus, for all 0, 0 ' c  91", 

[01 I ] [  s ~] Ot...~_oT(~TT~.3v~,T~)o t (7) O=O~-[~:rnr] 0 n 

where we have set y = [4]0'. This means that L is co-Lagrangian if and 
only if 

i.e., ~:T,/ is skew symmetric. Note that this condition can be met trivially 
by setting either s c = 0 or ~7 = 0. Thus, the spaces 

with 0 ~ 91", are co-Lagrangian. 
Denote by C~(  V, o') the set of all co-Lagrangian subspaces in V. The 

orthogonal group Cs( V, o') acts transitively on C ~(  V, o') (Dieudonn6, 1964, 
p. 153). The stationary group G,~ of the subspace 7r given by (8) consists 
of  all transformations A of  the form 

A = L M r U  
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where M is any nonsingular n x n matrix and U is any skew-symmetric 
matrix. Thus, C~(V, o-) is the homogeneous space 

c~(v, ~)~ o(v, ~)/G~ 

and 

dim C~(  V, o') = �89 n - 1 )  

Since C ~ (  V, tr) is a submanifold of the Grassmannian manifold of all 
subspaces in V of dimension n, which manifold is compact, we conclude 
that C ~ (  V, o-) is a homogeneous compact manifold. In fact, it is well known 
(Porteous, 1969, Theorem 12.12, p. 233) that ~ ( V ,  o-) is diffeomorphic to 
O(n, fit), and that any co-Lagrangian subspace L has the representation 

L: x =  I + ~  0 

where ff is an n x n orthogonal matrix. This representation defines a 
diffeomorphism of O(n, ~ )  onto c~5f(V, or). Thus, c ~ ( V ,  rr) has two 
diffeomorphic components, c ~ •  V, o-), each corresponding to a choice of 
orientation of ~".  The cohomology ring of O(n, fit) is well known (Steenrod, 
1957). The symplectic approach to this pseudo-Euclidean geometry allows 
new interpretations of  some cohomological classes. 

Note that the proper  orthogonal group Cs+(V, o-) does not act transi- 
tively on C ~ (  V, or) (Dieudonn6, 1964). It has two orbits, namely c ~ •  V, or). 
We quote a result from Dieudonn~ (1964, p. 154), which allows us to 
determine when two co-Lagrangian subspaces belong to the same com- 
ponent of c ~ ( V ,  or): 

1. L, L' belong to the same component of  c ~ (  V, or) if and only if n 
and r = d i m ( L n  L') have the same parity. 

2. L, L' belong to different components of  offal( V, o-) if and only if n 
and r = dim(Lc~ L') have different parities. 

In particular, r = 0 will be taken to have even parity. 

5 .  TRANSVERSAL CO-LAGRANGIAN SUBSPACES 

Subspaces U, W e  V are said to be transversal if V= U •  W. We shall 
now show that, given a co-Lagrangian subspace L c V, another co- 
Lagrangian subspace L' can be found which is transversal to L. Since 
Cs( V, o-) acts transitively on C~(V, ~r), we can always transform L into 
the co-Lagrangian subspace 
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Let L' be another co-Lagrangian subspace, and let its corresponding trans- 
form be 

If  L and L' are transversal, then ~r and 7r' must also be transversal. This 
will occur if and only if 

[0  ~ ] = d i m V  rank I 77 

Thus, the matrix ~ must be nonsingular, a condition that can easily be met. 
Introduce now a new parametrization of  L' by setting 0 = ~-10'. Then 

zr' becomes 

=,: 1:[,,]o, 
where 7#' is skew symmetric. It is clear that any co-Lagrangian subspace ~r' 
transversal to ~r can be obtained in this way. The set ~(~r) of all co- 
Lagrangian subspaces transversal to ~r is thus parametrized by the set of 
all skew-symmetric n x n matrices, which topologically is 9t n(n-1)/2. We 
conclude therefore as follows. 

Proposition 1. The set ~ ( L )  of  all co-Lagrangian subspaces transversal 
to any given L is a cell of  dimension �89 - 1). Furthermore, the sets ~ ( L ) ,  
where L ranges through the entire set C~(V,  o-), define an atlas on the 
manifold C ~ (  V, ~r). 

It is necessary for later developments also to establish whether, given 
two co-Lagrangian subspaces L and L' which are transversal, we can find 
a third L" which is transversal to both L and L'. As before, we can assume 
without loss of generality that L = ~r. Then, since L' and L" are both 
transversal to L, we can write 

1_~7/ 

For L' and L" also to be mutually transversal, we must have 

r ank [  / / , , ] = r a n k [  ,0  I,,] = 2n 
~' ~ J  ( , 7 - , / ' )  ,7.] 

Thus, 

rank[ rt' - r/'] = n 

Since r / -  rl" is skew symmetric, this condition can be met only in the case 
when n is even. When n is odd, no third transversal L" can be found. 
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6. P R O J E C T I O N S  O N T O  CO-LAGRANGIAN SUBSPACES 

Let L be a fixed co-Lagrangian subspace, and let L' be a co-Lagrangian 
subspace transversal to it. Consider the projection P: V--> V defined by 

P(u) = 0 Vu ~ L, P(v) = 0 Vv c L' (9) 

We thus have an exact sequence 

O-~L~ V ~  L'-~O (10) 

It is easily demonstrated that 

Vx, x'e v, o~(Px, x')+o~(x, Px')=~(x,x') 

Hence every projection P of the form (9) is an element of the Lie algebra 
co( V, or) with tZe = 1. The converse is also true: if P c co( V, or), tZe = 1, and 
P[L = 0, then there is a co-Lagrangian subspace L' which is complementary 
to L, such that Im(P)  = L' and such that (10) holds. The set 3~(L) of  all 
co-Lagrangian subspaces L' transversal to L is thus in one-to-one correspon- 
dence with the set { P c  co(V, o-): /Xp= 1 and P[L=O}. 

These observations enable us to give a coordinate-free description of  
the set 4 (  V, or). Let P be any element of  co( V, tr). Define the bilinear form 
Qp on V by 

Qp(u, v)= er(Pu, v)--�89 V) (11) 

Then QP can be shown to be skew symmetric. The conserve is also true: 
given a skew-symmetric form Q and any real constant tz, then equation 
(11 ) defines a unique element P of co ( V, o'). Note that, if P (u )  = 0 for u c L, 
then Qp(u, u ) = 0  and Qp(u, v) =-�89 v) for u c L  and vcL' .  Thus, 
Qp defines a pairing between L and L', giving rank QP = n. We have therefore 
shown the following result. 

Proposition 2. The followin2 sets are all in one-to-one correspondence: 
1. The set 3~(L) of all co-Lagrangian subspaces L' transversal to L. 
2. The set { P c  co(V, o'): ~[,$p m- 1 and PIP =0} 
3. The set of all skew-symmetric bilinear forms Q on V such that 

Q(u,v)=�89 u c L ,  v c V  

where L ' = k e r ( P - I ) ,  and P and Q are related by (11). 

Suppose now that Q1 and Q2 are two skew-symmetric bilinear forms 
on V satisfying 

Oi(u,v)=-�89 ucL ,  v c L '  (12) 
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Then the difference Q I -  Q2 = H satisfies H ( u ,  x ) =  0 for u c L and x c V. 
Thus, H defines a symmetric bilinear form on the quotient space V / L .  
Conversely, any skew-symmetric bilinear form on V~ L can be considered 
as a bilinear form H on ~R 2" with the property that H ( u ,  x) = 0 for all u E L 
and x ~ V. This yields the following proposition. 

Proposition 3. Let L be a fixed co-Lagrangian subspace. Then the space 
~q(L) of  all co-Lagrangian subspaces transversal to L is in one-to-one 
correspondence with the space Q ( V / L )  of all skew-symmetric bilinear 
forms on V/L. 

If  L' is a co-Lagrangian subspace transversal to L, then we may identify 
V / L  and L'. Given L " e  ~ ( L ) ,  the bilinear skew-symmetric form H on L' 
associated with L" is given by 

H ( v, , Vz) = cr( PL,,Vl , V2), vl , v2 c L' (13) 

where PL,, is the projection of V onto L" along L, i.e., the sequence 

O~L'-'-', V Pv '  L " ~ 0  (14) 

is exact. By a previous result, the bilinear form QL, associated to L' ~ ~T(L) 
vanishes on L'. Clearly, we have 

H = (QL"-- Q)IL' 

where H is defined by (13). 
We note that H is nonsingular if and only if L' and L" are transversal. 

In fact, if u ~ L' c~ L", then 

P v ( u )  = PL,,(U) = u 

and thus 

QL,(u,x)= Ov,(u, x) Vx~ V 

Hence H ( u ,  x) = 0. Conversely, if L' n L"=  {0}, then the projection P: L'-' ,  
L" is one-to-one and, from (13), we conclude that H is nonsingular on L'. 

Let L', L " ~ ( L ) ,  i.e., L' and L" are both transversal to L, but not 
necessarily to each other. Then the projections PL' and PL,, along L belong 
to co( V, o-), and 

/-*eL. = /Z&., = 1 

Thus, 

P.- eL.c o( V, o') 
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Furthermore, PL,-- Pc, is nilpotent. For, let u ~ L. Then PL,(u) = PL.(u) = O. 
Also, if v ~ L", then 

PL,(V) -- PL,,(V) = PL,(V) -- v e L 

Since PL, and PL" map L onto {0}, it follows that 

( P L ' -  PL~ 2 = 0 

as required. From the nilpotence of PL'-- PL" we obtain also 

exp(PL'--PL") = I + PL'--PL,,e O(V,  o') 

This yields the following proposition. 

Proposition 4. Let L be a co-Lagrangian subspace. If  L' and L" are two 
co-Lagrangian subspaces transversal to L, then 

PL,-- PL,,e o( V, ~r) 

and 

( P L , -  p . , )2  = o 

Also, the map 1 + P L ' -  PL" is the identity on L, it carries L" onto L', and it 
belongs to o( V, o-). 

7. T H E  F U N D A M E N T A L  C L A S S  OF H1(cd.~(V, tr)) 

Since c ~ (  V, o') is diffeomorphic to O(n,  ~ )  (Porteous, 1969), we have, 
for n > 3 ,  

H'(  ~ (  V, ~)) = ~r,(~r V, ~)) = Z2G Z2 (15) 

Now, we know that SO(n ,  9l) is double covered by the spinor group, which 
is one-connected, and that any one-connected manifold is orientable. But 
a manifold M is orientable if and only if H~(M,  Z2) =0.  Hence, from (15), 
we conclude that c ~ (  V, or) is not orientable. 

Let M be a nonorientable manifold and suppose that ~r = {U, &u} is 
an atlas on M. Then the coordinate transformations of the principal frame 
bundle on M are given by 

guy(X)  = 3-(r  o Cb ' ) (x)  (16) 

where x e r b~( U n V), U, V e ~r and 3"( �9 ) denotes the Jacobi matrix. The 
functions 

a u v ( X )  = det[guv(X)] ,  U, V e  ~r (17) 
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are the coordinate transformations of  the associated line bundle l(M). Since 
M is not orientable, the bundle I(M) is nontrivial. The functions 

rnuv(X)=sgn(auv), U, V ~ M  (18) 

define a Cech 1-cocycle with coefficients in Z2 ~ {1,-1}.  
Hgrmander  (1971, p. 156) has given a description of Hl(~ag(V, w)), 

where 5gag(V,w) is the space of  all Lagrangian subspaces in (V,~o), in 
terms of an invariant constructed from a quadruplet of  Lagrangian sub- 
spaces. This cannot be done for the case of  co-symplectic subspaees, since 
quadruplets of mutually transversal co-Lagrangian subspaces do not exist. 
Furthermore, there seems to be no invariant of  the type used by H6rmander,  
constructed from a pair of skew-symmetric bilinear forms. 

Let 5f(L) c ~ (  V, o-) be the set of all co-Lagrangian subspaces trans- 
versal to L. From Proposition 3, Section 6, we know that ~g(L) is a cell 
ditIeomorphic to the space of  all skew-symmetric bilinear forms on the 
quotient space V/L. Furthermore, from Dieudonn6 (1964, p. 154) we also 
know that, if n is even, L~ s and if n is odd, L~ 5f(L). In the latter 
case, L and LF(L) belong to different components of  cs V, or). 

If  L, L ' c  qg~f(V, cr) and L1 c ~ ( L ) ~  LP(L'), then one can identify V/L  
and V/L'  with the complementary space L1. A given L2c ~ ( L )  n (L) n 
~ ( L ' )  then defines the skew-symmetric bilinear form on L~ by 

Sty(u, v) = o'(P~u, v), u, v ~ L1 (19) 

where PL is the projection of  V onto L2 along L. Similarly, 

S'c2(u, v) = o'(P'c~u, v), u, v e L1 (20) 

where P~c is the projection of V onto L2 along L'. 
The intersection Lf(L) n ~ ( L ' )  has a finite number of connected com- 

ponents. To illustrate this, we take 

Then L1 : x = [x]~ belongs to ~ ( L )  c~ ~ ( L ' )  if and only if 

ran [s 
which is equivalent to 

qS(X) = det [ I  - S'X] # 0 

Denote the algebraic set 

Mo(L, L') = {X: ~b(X) = O} 

(22) 

(23) 
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Now, we find that if X = [xu] , S ' =  [su], i, j = 1 , . . . ,  n, then 

- U U x Su (no summation) (24) 
ox o. 

where U~j is the (i,j) algebraic cofactor of I -  S'X. Equations (24) and (23) 
are linearly independent. Therefore, on a dense and open subset of 
Mo(L, L'), the gradient of ~b is nonzero. Let Xo~ Mo and grad ~b(xo)# 0. 
Suppose U1, U2 are two adjacent components of s  ~ (L ' ) ,  i.e., Xoc 
O1 n 02, where 0 denotes the closure of U. Consider the function 

~b(t) = ~b(Xo+ t grad ~b(Xo)) 

Then  ~b(0)=0, and ~b'(0)= Ilgrad 4~(Xo)ll 2. This shows that ~b(t) changes 
sign when passing through t = 0. We thus conclude the following result. 

Proposition 5. If  U~, U2 are two components of 5r  5r such 
that grad ~b(Xo)#0 for some Xo~ 0 i n  O2, then the function ~b(X) has 
different signs on U~ and U2. 

We now take any two co-Lagrangian subspaces L and L', and choose 
Lt, LEe =~(L)n ~(L'). By the homogeneity of ~LP(V, tr), we can assume 

" once again without loss of generality that 

where ~: e ~ll n. Then we define 

(L, L' ;  L1, L2) = sgn d e t ( I - S X ) ( I - S ' X ) ( I - S Y ) ( I - S ' Y )  (27) 

Clearly, (L, L';  L1, L2) is a locally constant function on LI, L2 E =~CP(L) 
~(L ' ) ,  with values in Z2 ~ {1,-1}. The following obvious identities show 
furthermore that (L, L';  L1, L2) defines a Cech 1-cocycle over Z2, 

(L, L' ;  L1, L2) =(L,  L';  L2, L1) 

(L, L';  L, ,  Lz)(L, L';  L2, L3)(L, L';  L3, L1) = 1 

where L~, L2, L3e Ar ~(L ' ) .  Denote the corresponding cohomology 
class by to. We shall now demonstrate the following result. 

Proposition 6. The cocycle to generates the cohomology class 
H'(~e~e( v, (~)). 

Suppose to = dt~, a ~ H ~  V, or)). Then the cocycle to either defines 
a function, or it is constant on cg~(v, tr). Suppose 

~ ( L )  n ~ (L ' )  n ~ ( K )  n ~ ( K ' )  # 
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then the corresponding zero sets Mo(L, L') and Mo(K, K') are distinct. Let 
U be a component of ~ ( L )  n Lf(L') such that U n Mo(K, K') ~ O. Since 
the regular points of Mo(K, K') are dense in Mo(K, K') and U is open, 
there is a regular point Xo of Mo(K, K') in U. According to Proposition 5, 
the function (K, K'; K1, K~) changes its sign in U. Since U is a connected 
component of ~ ( L )  n ~ (L ' ) ,  the function (L, L';  L~, L~) is constant on U. 
Thus, either the cocycle to cannot define a function, or it is not the coboun- 
dary of any cocycle, contrary to the initial hypothesis. This completes the 
proof. 

Propositions 3.1 and 3.2 of Guillemin and Sternberg (1977) for the 
Lagrangian subspaces of symplectic geometry can be demonstrated without 
difficulty for the co-Lagrangian subspaces of co-symplectic geometry. 

Proposition 7. Let R be an isotropic subspace of (V, o-). Then W = 
R• is a co-symplectic vector space, and the map 

p(X)=XnR•  

sends q~Z#( V, o-) into ~Z#( W, O-w), where trw is the induced co-symplectic 
bilinear form on W. 

The proof of this proposition follows directly from the analogous 
symmplectic case. See Guillemin and Sternberg (1977, p. 131) and also 
Dieudonn6 (1964, p. 154). The case in which dim R = 1 is of particular 
importance. We have 

dim W = d i m  R• = 2 n - 2  

Put SeR = {L~ ~ (  V, o-); L ~ R}. Then we have the following result. 

Proposition 8. The set SeR is a submanifold of codimension (n - 1) in 
c~L#( V, o-). The map/9, when restricted to ~L#( V, o-)\SeR, is a smooth map, 
making ~ ( V ,  (r)\SeR into a fiber bundle over ~ ( W ,  o-w) with fiber 
diffeomorphic to ~". 

Clearly SeR has codimension ( n - 1 )  in ~r or) if and only if SeR n 
Ze(L), which is nonempty, has the codimension ( n -  1) in Ze(L) for all L. 
By an appropriate transformation from O(V, o-), we can transform ~ ( L )  
into Z#(~r), where 

[0], 
and 
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Suppose that under this transformation R becomes 

= t, t ~  92 
x RE 

Then R is isotropic if and only if R1, R2 c ~ "  are perpendicular with respect 
to the standard Euclidean product in 92". Clearly L~ 5eg if and only if for 
some ~ c 9] n, 

Thus, 

SR1 = Rz (28) 

Since R1 is perpendicular to R2 and S is a skew-symmetric n x n matrix, 
equation (28) determines ( n - l )  linearly independent equations in the 
entries of  5P. Hence codim 0~ = n -- 1. 

We now show the map p: 5~ ~ c ~ ( V ,  or) given by 

L ~  ( R  • n L ) / ( R  c~ L)  = L / R  

is a bijection. Recall that R c L  and L c  R ~. Then, if L ' c R •  is co- 
Lagrangian, the preimage of  L' by the quotient map 

~ w  : R•  o R ~ /  R 

is an unique co-Lagrangian subspace LD R in R • such that p ( L ) =  L'. 

Let us now investigate the complementary set ~ ( V ,  cr)/S~R . For 
L r  R • that is, R e  L, the map L-->Lm R • is smooth, since d i m ( L ~  R • 
is constant. Furthermore, Lc~ R • does not contain R. Therefore the map 

Lr~ R•  ( L n  R •  R )  = ( L n  R• 

is also smooth. Thus, p is smooth on ~ ( V ,  O')\5~R. Again, since L;~ R, 
and therefore L r  R • the intersection L c ~ R  L is an (n -1 ) -d imens iona l  
isotropic subspace in R ~ which does not contain R. This implies that the 
image (L c~ R * ) / R  is an (n - 1)-dimensional isotropic or co-Lagrangian 
subspace in W. We conclude that the preimage r (K)  of any co-Lagrangian 
subspace K in W is an (n - D-dimensional isotropic subspace in R ~. 

Given an (n -1) -d imens ional  isotropic subspace L ' c  R • the set of  all 
co-Lagrangian subspaces L in V such that L r~ R • = L' can be parametrized 
as follows. Note that 

( L ' ) • 1 7 7  

Thus, d im(U) • = n + 1. Since L ' c  (L') • take a complementary subspace to 
L' in (L') -L, say Z c  (L') -L. Then 

(L') 1 = L ' G Z  
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and we have dim Z = 2. Because (L') •  L G  R, every co-Lagrangian sub- 
space in (L') -L is determined uniquely by a one-dimensional subspace in Z, 
with the exception of the subspace R. The set of all one-dimensional 
subspaces in Z is a circle. A circle with one point removed is an open 
segment. Thus, the preimage p-l(L') ,  with L '~  c~Lf(W), is ditieomorphic 
to ~n-1 x the open segment, which gives ~n. It follows then that the fibration 
c~(V, O')/SeR over ~ ( W )  is locally trivial. 

8. C O N C L U S I O N  

In this paper, we have defined the co-symplectic geometry and have 
investigated the null structure of a co-symplectic vector space (V, tr). The 
set ~g~(V, tr) of all maximal isotropic subspaces of V, which we call 
co-Lagrangian subspaces, is a homogeneous compact manifold of dimension 
�89 1) consisting of  two diffeomorphic components. The set ~ ( L )  of all 
co-Lagrangian subspaces transversal to a given co-Lagrangian subspace L 
is a cell of dimension �89 and can be parametrized by the skew 
symmetric bilinear forms on V/L. The sets ~ (L) ,  with L ranging through 
the entire set ~ ( V ,  or), define an atlas on cr or). The fundamental 
group of c~(V,  o-) is Z2~Z2. 
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